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Abstract. This paper presents iSpike: a C++ library that interfaces between spiking

neural network simulators and the iCub robot. It uses a biologically-inspired approach

to convert the robot’s sensory information into spikes that are passed to the neural

network simulator, and it decodes output spikes from the network into motor signals

that are sent to control the robot. Applications of iSpike range from embodied models

of the brain to the development of intelligent robots using biologically-inspired spiking

neural networks. iSpike is an open source library that is available for free download

under the terms of the GPL.

1. Introduction

In recent years there has been increasing interest in spiking neural networks and many

people now believe that the precise timing of spikes may be an important part of the

neural code [1]. The latest generation of spiking neural simulators now uses CUDA

hardware acceleration on commercially available graphics cards to simulate tens of

thousands of neurons and millions of connections in real time [2, 3]. Spiking neural

networks are being used to construct biologically-inspired models of the brain [4], but

with a few exceptions (for example, Krichmar et al. [5]), most of these models have not

been embodied, whereas it is now increasingly thought that the brain cannot be fully

understood without taking its embodiment and environment into account [6, 7].

Within the field of robotics, a number of sophisticated robots have been developed

that are capable of flying, swimming, and terrestrial locomotion, with rich senses that

can gather visual, audio, location, tactile, temperature and even air-flow or water-

flow information from the surrounding environment. Some work has been done on the

use of biologically-inspired spiking neural networks in robotics, but few attempts have

exploited hardware-accelerated simulated networks for real-time robot control. One of

the key problems has been the lack of an easy way of interfacing between simulator and

robot. Such an interface should encode sensory data from the robot into spikes and

decode spikes from the simulator into motor commands that are sent to the robot.

To address this gap we have developed the iSpike system, which interfaces between

the real or virtual iCub robot and the SpikeStream/NeMo simulators. iSpike encodes
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Figure 1. iSpike interfaces between a spiking neural simulator and the iCub robot

Figure 2. Real and virtual iCub robot

visual and proprioceptive data from the iCub into patterns of spikes that are passed

to the simulator, and the spiking output from the simulator is decoded into motor

commands that are sent to the robot (Figure 1). iSpike’s encoding and decoding has been

made as biologically realistic as possible and the system is available for free download

under the terms of the GPL (http://ispike.sf.net).

The first part of this paper provides background information about the iCub robot,

the tools for neural simulation that we have developed, and previous work on modelling

the biological senses and converting data to and from spikes. Section 3 presents an

overview of the iSpike architecture, and then Section 4 explains how sensory data from

the robot is encoded into spikes, and how spikes from the network are converted back into

motor signals that are sent to the robot. An evaluation section contains measurements

of iSpike’s accuracy and performance, and the paper concludes with a discussion and

plans for future work.

2. Background

2.1. The iCub Robot and YARP

The current version of iSpike interfaces with the iCub robot, which was designed to

replicate the appearance and capabilities of a two year old child. Its 53 degrees of

freedom enable it to carry out complex locomotion and behaviour, and it is equipped

with a rich variety of sensors, including digital cameras, gyroscopes, accelerometers,

microphones and force/torque sensors [8]. A simulated version of the iCub is also

available, which has similar functionality to the real iCub (Figure 2).
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iSpike communicates with the real and virtual iCub via YARP (Yet Another

Robot Platform). This is a networked robotics middleware platform which provides a

communication via a configurable set of ports. The client communicates with particular

ports to receive sensory information and sends commands on motor ports to control the

robot. This communication with YARP is handled within iSpike: the user just supplies

the IP address and port of the YARP nameserver.

2.2. NeMo and SpikeStream Neural Simulators

iSpike works with any neural simulator that can interface with a C++ library. The

current implementation targets the NeMo neural simulator and SpikeStream — a

graphical interface to NeMo that provides visualization, analysis and network creation

tools.

NeMo‡ is a spiking neural simulator that enables high performance real-time

simulation of around 100,000 point neurons, delivering up to one billion spikes per

second with the use of highly parallel commodity CUDA-enabled graphics processing

units (GPUs) [2]. NeMo was originally developed to run the Izhikevich neuron model

[9], and it has been recently extended to support arbitrary neuron models as well as

Kuramoto oscillators [10]. Learning is supported through the spike time dependant

plasticity (STDP) rule put forward by Song et al. [11]. NeMo is an open source project

that is distributed as a C++ class library with APIs for Python, PyNN, Matlab, and

pure C, and it can interface with iSpike within a C++ program that constructs the

network in NeMo, initializes iSpike with appropriate input and output channels, and

passes spikes to and from iSpike at each time step.

SpikeStream§ provides a sophisticated 3D graphical interface that enables the user

to create and edit neuron and connection groups and control simulation and archiving

(Figure 3). Key functions, such as network creation, simulation and analysis, are

implemented as plugins, which makes it easy to customise and extend the functionality.

Simulations are carried out using the hardware acceleration provided by NeMo, and

SpikeStream includes analysis plugins for measuring state-based φ and liveliness in the

network [12]. A MySQL database is used as the storage back-end, and SpikeStream is

written in C++ using Qt for the GUI.

To facilitate iSpike integration, SpikeStream includes a wrapper plugin that injects

output spikes from iSpike into the network and passes spikes from the network into

iSpike (Figure 3). This wrapper enables the user to connect different iSpike channels to

different parts of the network and to configure the properties of the channels.

2.3. Previous Work

The most similar system to iSpike is the interface that was created for the CRONOS and

SIMNOS robots [13], which encoded visual and proprioceptive data from the robots into

‡ NeMo is available for download at: http://nemosim.sf.net.
§ SpikeStream is available for download at: http://spikestream.sf.net.
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Figure 3. SpikeStream GUI showing wrapper for iSpike

spikes that were passed to a spiking neural network simulated in SpikeStream. Spiking

motor output from the network was transformed back into real values that were used

to control the robots. This system was used to develop a spiking neural network that

controlled the eye movements of SIMNOS, learnt associations between motor output and

visual input, and used models of imagination and emotion to avoid negative stimuli [14].

A second related project is the spiking interface developed by Bouganis and Shanahan

[15], which converted the iCub’s proprioceptive signals into spikes, and converted spikes

from a network back into motor commands that were sent to the iCub. Bouganis and

Shanahan used this interface to develop a spiking network that autonomously learnt to

control a robot arm after an initial period of motor babbling.

A number of different approaches have been proposed for converting data to and

from spikes [16, 17], and different coding and decoding strategies have been investigated

by Novellino et al. [18] using a bidirectional neural interface between in vitro rat neurons

and a two wheeled robot. There has also been a large amount of related work on retina

modelling using software — for example, [19] — and hardware, for example [20, 21]. A

key limitation of much of this work is that the software for spike encoding and decoding

has not been made generally available or that it has been based around proprietary

hardware or robotic systems that are not widely used.

3. System Overview

iSpike is implemented as a cross-platform C++ library. The current version supports the

encoding of proprioceptive data from joint angles into spikes, the decoding of spikes into

joint angles and the conversion of camera data into spikes in a retina-inspired manner.

The architecture of iSpike is illustrated in Figure 4.

Internally iSpike consists of the following components:
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Figure 4. iSpike architecture and its interface with YARP/iCub and

SpikeStream/NeMo

• Reader. Extracts sensory data of a given type from a given location. The current

release of iSpike has readers that can extract file data as well as readers that can

access visual data and joint angles from YARP. Readers run as separate threads

that buffer the latest data.

• Writer. Outputs data of a given type to a given destination. The current release

has writers that output data to file as well as writers that send motor commands

to the iCub using YARP.

• Input Channel. Receives sensory data from a Reader of a given type and transforms

it into a spike representation, which is passed to the neural simulator. For example,

a JointInputChannel converts the angular data prepared by an AngleReader into

spikes. The spike conversion process depends on simulated Izhikevich neurons,

which are stepped in synchrony with the neural network simulator (see Section 4).

• Output Channel. Receives a spike pattern from the neural simulator, converts it into

an appropriate format, and uses a Writer to deliver it to a predefined destination.

So, for example, a JointOutputChannel converts neuron spike patterns into joint

angle motor commands and uses an AngleWriter to deliver these to the iCub.

The spike conversion process depends on simulated Izhikevich neurons, which are

stepped in synchrony with the neural network simulator (see Section 4).

The next section describes how visual and proprioceptive data from the iCub is pre-

processed and converted into spikes, and how spikes from the network are converted

into motor commands that are sent to the robot.

4. Sensory and Motor Spike Encoding and Decoding

This section describes how iSpike pre-processes data from the robot and converts it to

and from spikes. To achieve a more biologically realistic conversion it is necessary to

understand the encoding and decoding methods that are used by the body to transform

analogue sensory information into a spike pattern, and to transform a spike pattern into

a movement of the body. This is an active research field and there is much debate about
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the methods that are used by the sensory and motor systems of different biological

organisms. The most popular interpretations of neural coding are [1]:

• Rate coding. In this approach, the rate at which a neuron fires is proportional

or inversely proportional to the intensity of the stimulus. The rate is interpreted

as either the average firing rate over time, the average firing rate over several

repetitions of an experiment, or the average rate over a population of neurons.

There is evidence that rate-based coding is used in the stretch receptor of a muscle

spindle [22] as well as in the auditory cortex of marmoset monkeys [23]. A common

criticism of rate-based encoding schemes is that either a considerable amount of

time or a large number of neurons is required to obtain an accurate value for the

mean firing rate [24].

• Temporal coding. In this encoding scheme the intensity of the stimulus is related to

the absolute latency of the first spike to arrive, or to the relative latency between

the first spikes arriving at a particular neuron. This approach was used by Gollisch

et al. [25] to accurately reconstruct the image displayed to a salamander retina.

A major advantage of this method is that a small number of spikes is sufficient to

accurately derive the intensity of the original stimulus, which could account for the

brain’s low latency reaction times to environmental stimuli. A disadvantage is that

the decoded value can be significantly affected by jitter.

• Rank order coding. This uses the order of arrival of spikes to encode the data, with

each ordering encoding a particular value related to the original stimulus, such

as its intensity level. Using this method 6 neurons can encode 6! = 720 distinct

values. This approach is immune to noisy temporal jitter, it is invariant to changes

in contrast and luminance (when encoding images), and it can be used to encode a

large amount of information very rapidly [24]. While there is no clear evidence of

rank order coding in biological systems, it has been successfully used in modelling

work to encode and decode images [26].

• Population coding. In this method the sensory signal is encoded as the collective

activity of a population of neurons (the population vector). There is evidence

that population coding is used for some types of motor control in the brain —

for example, Georgopoulos et al. [27] showed that the direction of movement of a

monkey’s arm was strongly correlated with the population vector value received

from neuron groups in the primary visual cortex. While population coding is

typically associated with a rate-based code, it can also be applied to other forms

of coding — for example, the average time to spike of a whole population could be

used instead of the time to spike of individual neurons within the population.

The remaining parts of this section describe the spike encoding and decoding

methods used by iSpike, which attempt to be compatible with as many of these

interpretations of the neural code as possible.
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Figure 5. Simplified illustration of the human retina showing some of the information-

processing cells

4.1. Biological Vision

Visual information enters the human eye in the form of electromagnetic waves with a

variety of wavelengths and amplitudes. These waves are focused by the lens onto the

retina at the back of the eye, where they travel through a number of layers until they

reach the photoreceptor cells, which are the starting point for retinal visual processing

(Figure 5.

Photoreceptors come in two types called rods and cones. Rods have a similar

response to all wavelengths of visible light; cone photoreceptors come in three varieties

that are tuned to light with a wavelength of 430 nm (blue), 530 nm (green) or 560

nm (red). The central or fovea region of the retina is almost exclusively covered in

cones, whereas the periphery is mostly covered with rods. Rods are over 1000 times

more sensitive to light than cones, and during night time it is mostly these that

contribute to vision. Conversely, during daytime lighting conditions, the cones are

mainly used, as the light intensity is too high for the rod photoreceptors to operate.

The current implementation of iSpike ignores the presence of rod photoreceptors, as

daylight conditions are assumed throughout.

When light hits a rod or cone photoreceptor, neurotransmitter is released and the

signal is transmitted through bipolar and horizontal cells to ganglion cells. The wiring

and response characteristics of bipolar and horizontal cells causes many ganglion cells

to be excited by a particular colour of light at the centre of their receptive field and

inhibited by a different colour of light at the periphery of their receptive field. So, for

example, a Red+Green- (R+G-) ganglion cell is excited by a point of red light at the

centre of its receptive field and inhibited by an annulus of green light at the periphery

of its receptive field. The response characteristics of the most common types of colour-

opponent ganglion cells are shown in Figure 6.
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Figure 6. Receptive fields and response characteristics of different types of colour-

opponent retinal ganglion cells. Adapted from [28].

Ganglion cells are also classified according to the temporal characteristics of their

response. Approximately 5% are magnocellular cells, which respond to stimulation with

a transient burst of action potentials and are particularly sensitive to movement. 90%

are parvocellular cells, which have smaller receptive fields and produce a steady stream

of action potentials for as long as the stimulus is present. Only parvocellular cells exhibit

the colour opponency shown in Figure 6, and it is these that are modelled in the current

version of iSpike.‖

4.2. iSpike Encoding of Visual Data into Spikes

The encoding of visual data into spikes is carried out in two stages. The image is pre-

processed in a manner mimicking the transformations that take place in the biological

retina. This results in a set of maps that are optionally normalized between 0 and 1,

and then converted into spikes by feeding the analogue values as currents into a layer

of Izhikevich neurons [9].

‖ This high level summary of the human visual system is based on [28]
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Figure 7. Visual pre-processing. In the first pre-processing stage each frame in the

stream of 320×240 images from the iCub’s cameras is re-sampled into log polar form

to mimic the foveation of the retina. This foveated representation is transformed into

colour-opponent visual maps using a difference-of-Gaussians method.

The first stage of the image pre-processing is the foveation of the rectangular image

received from the iCub. A number of ways of modelling the foveation of the retina have

been put forward, including log(z), log(z + a) and Wilson’s model [29]. While Wilson’s

model is the most biologically realistic, it is also potentially the most computationally

expensive, and the current implementation of iSpike uses the simpler logz model, which

just involves a log polar resampling of the original image. The colour-opponent ganglion

cells are simulated by the difference-of-Gaussians method created by Enroth–Cugell and

Robson [30]. In the case of Red+Green- cells, red and green versions of the original image

are created, and then a Gaussian filter is applied using different standard deviations for

each image. The final R+G- image is obtained by subtracting the Gaussian green from

the Gaussian red image, as illustrated in Figure 7.

After an optional normalization to the range 0-1, the final stage of visual processing

is the conversion of the foveated colour-opponent maps into spikes. In the retina the

early stages of visual processing in bipolar and horizontal cells are analogue, with the

final spiking output being generated by the ganglion cells. This is modelled by feeding

the analogue visual maps into a 2–dimensional array of Izhikevich neurons [9], with the

current entering each neuron being proportional to the intensity of the corresponding

pixel (Figure 8). The resulting neuron spiking activity is passed to the neural simulator.

The advantage of this approach is that it encodes analogue values into spikes in a
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Figure 8. Conversion of visual data into spikes. After the visual maps have been

optionally normalized, each intensity value is converted into a sequence of spikes by

feeding it as input current into an Izhikevich neuron. These neurons can be configured

by the user to produce a wide range of spiking responses — for example, regular

spiking, chattering, and intrinsically bursting — to match the interface requirements

of the cognitive architecture. The resulting spikes are added to a buffer where they

can be asynchronously read by the spiking neural simulator.

way that is compatible with temporal, rank order and rate-based coding. The neuron

that receives the most current will be the first to spike and it will also fire at the highest

rate. The neuron with the most current will also be likely to fire before the one with

the second highest current and so on, thus producing a rank order code. Configuration

of neuron parameters can be used to control what type of spike code to employ.

4.3. Biological Proprioception

Proprioception is the somatic sensory system responsible for the identification of body

part ownership and for providing information about the position and movement of

individual body parts. Most of the muscles in the human body contain specialised

structures called muscle spindles that send information about changes in the muscle’s

length, which is directly related to the joint position. Muscle tension is detected by the

Golgi tendon organ, which acts like a strain gauge.

4.4. iSpike Model of Biological Proprioception

The iCub robot provides information about the angles of each of its joints. While

these could be converted into spikes using a rate or latency code in a single neuron,

this would take too long to read accurately or result in significant error. Instead, a

population-based approach is used, in which a group of neurons spans the range of

possible angles. When a joint angle is received from the robot it is converted into a

vector of input current values by convolving it with a Gaussian function. These current

values are multiplied by a parameterized weight and fed into the neurons, producing a

spike pattern that is delivered to the neural simulator (Figure 9). This use of currents

pumped into Izhikevich neurons is compatible with several interpretations of the neural

code, since either the rate, temporal difference or rank order in which the neurons fire
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Figure 9. Conversion of joint angle into spikes. The value of the joint position is

converted into a Gaussian distribution of current, with a mean equal to the current

value and a variance that can be configured to match the measurement noise of the

sensors. This current is fed into a population of Izhikevich neurons, whose spiking

response can be configured by modifying the neuron parameters. The spiking output

of these neurons is passed to the neural simulator.

can be used to reconstruct the joint angle from the population.

4.5. Biological Motor Control

Biological motor control can be roughly divided into two components:

• Voluntary muscle contraction. Neurons in the motor cortex and brain stem specify

the contraction of groups of muscles to move a part of the body, such as an arm

or leg, into a particular position. Circuitry within the spinal cord ensures that

antagonists of the contracted muscles are relaxed, and it maintains the body in a

particular position.

• Motor programs in the spinal cord. Neural circuitry in the spinal cord executes

sequential muscle contractions that lead to simple behaviours, such as the

withdrawal reflex or running [31]. The brain does not control the order and nature

of the individual commands, but sends a trigger to the spinal cord to indicate

that a particular movement pattern should be carried out. The spinal cord then

executes the individual actions specified by the requested motor program. A good

demonstration of this phenomenon is a chicken’s ability to continue running when

it has been decapitated.

The current version of iSpike focuses on voluntary motor control, both because it

would be considerably more complex to create motor programs controlling reflexes and

running for the iCub, and because these could be modelled within a neural network
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Figure 10. Conversion of spikes into motor commands. The per-joint value is

computed by taking the sum of receptor means weighted by the normalised firing

rate over a short time window. The resulting joint angle is sent through YARP to the

iCub.

if they were required. Stored motor programs also have the limitation that they are

typically finely tuned for a particular body — a circuit that produced running behaviour

in the real iCub would be unlikely to work on the virtual iCub. Within the brain most of

the voluntary higher level motor control occurs in the primary motor cortex, and there

is evidence that a population-based encoding is used to specify movement direction [27].

4.6. iSpike Model of Biological Motor Control

The iCub is controlled by setting joint angles in the robot. In iSpike the spike-to-angle

conversion is carried out by an array of receptors that map onto the neurons producing

the spike pattern. Each receptor represents a single angle, and it contains a current

variable, which is increased by a fixed amount with each observed spike and decays

exponentially over time. With continued input from the spike pattern, the receptors

receiving spikes more often will have a higher current value and receptors receiving no

spikes will eventual decay to zero. The joint angle value is extracted from the receptors

by taking the average of the current variables multiplied by the receptor angles. This

process is illustrated in Figure 10.

5. Evaluation

An ideal spike conversion library needs to be both accurate and fast. This section

discusses the potential data loss introduced by converting between real-valued data

and spikes (Section 5.1) and gives some performance measurements of the system
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Figure 11. Encoding and decoding accuracy (absolute error in degrees) for different

parts of the angle space, when transitioning from an initial angle of zero. (a) 25 neurons

in population; (b) 100 neurons in population.

(Section 5.2).

5.1. Joint Angle Conversion Accuracy

The accuracy of the joint angle encoding and decoding was evaluated by converting a

series of angles from scalar values into spike patterns and back again. The resulting

discrepancy between the initial and final value gives a measure of the accuracy of the

spike coding scheme, providing a combined error for both encoding and decoding.

To evaluate whether the whole angle space is encoded with the same quality,

we encoded and decoded a large number of angles while keeping a constant number

of neurons/receptors (25 or 100) and a fixed normal distribution for the receptive

field (σ = 0.5 neurons). The angle space was sampled at half degree intervals and

the combined encoding/decoding error was measured as the system adapted to an

instantaneous change from an initial angle of 0 to the new angle. The encoding/decoding

error was measured over a period of 50 ms. The results of this experiment is shown in

Figure 11. When using a small number of neurons there is some periodicity in the result,

which is reduced by increasing the size of the neuron population. The results also show

that there is a delay between a change in the input angle and the corresponding change

in the decoded angle. When converting from spikes to angle each spike has an effect over

a time period (due to the exponential decay) and there is therefore some delay before

the new spike pattern dominates. The delay before a stable value is achieved increases

with the magnitude of the change in angle, but even large changes in input gives errors

of less than five degrees after 10 ms and less than one degree after 15 ms.

The size of the population that is used to encode and decode a value also affects

the accuracy, and so we measured the combined encode/decode error for a varying

number of neurons between 2 and 100. Figure 12(a) shows the root mean square error

(in degrees) over time for a number of runs using different population sizes. The error
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Figure 12. Accuracy of encoding/decoding measured by root mean square error (in

terms of angle) for (a) variations of population size, averaged over angles, and (b)

variations in perceptive field size, averaged over angles.

for each time/size pair is the average over 40 runs with transitions between pairs of

uniformly random angles in the range [−45◦, 45◦]. The figure shows accuracy improving

both with increasing population size and with time. Populations less than ten neurons

display error rates in excess of 10 degrees, whereas with population size from around

50, the error is generally less than one degree. For large populations, the error settles

at this low value after approximately 20 ms.

When encoding angles into spikes and when decoding spikes into angles, each neuron

in the population code has a normal receptive field and variations in the width of

this field also affects accuracy. Figure 12(b) shows the root mean square error for a

population of 50 neurons with standard deviation (in neurons) ranging from 0.05 to 25,

averaged at each time step over 50 runs with different initial and final angles drawn

from a uniform distribution. This shows that fairly narrow fields provide better results.

5.2. Performance

The processor-intensive components of iSpike were benchmarked separately to evaluate

their impact on the performance. The following tests were carried out using an Intel

Core 2 Quad Q6600 CPU, Windows 7 and 4 GB of DDR2 RAM:

• Neuron simulator. The conversion of sensory data into spikes depends on Izhikevich

neurons, which are modelled in a simple simulator within iSpike. The efficiency of

this simulator was tested by creating different sized networks and measuring the

average number of 1ms steps that could be simulated in one second of real time.

The results shown in Figure 13(a) indicate that a network of 1000 neurons can be

simulated 10× faster than real time, whereas a network of 1,000,000 neurons runs

100× slower than real time. In our experiments we found that 100 neurons were

more than enough to encode the angle of a particular joint, and so 5300 neurons

would be needed to encode the proprioceptive information from the robot’s 53
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(a) (b) (c)

Figure 13. iCub performance test results. (a) Performance of neuron simulator; (b)

Performance of foveation; (c) Performance of difference-of-Gaussians visual filter.

degrees of freedom. The iCub’s 320×240 image resolution would require 76,800

neurons to encode, which would run 3× slower than real time.

• Foveation. The log polar foveation was run for ten seconds to measure the average

number of images that could be foveated at different resolutions. The results in

Figure 13(b) show that images with 50×50 resolution can be produced 115 times

per second, whereas it takes 3 seconds to produce a single image with a resolution

of 1000×1000. At the iCub resolution of 320×240 only four to five images can be

produced per second, which is significantly less than the 15 frames per second from

the robot’s camera.

• Difference-of-Gaussians visual filters. The difference-of-Gaussians visual filter was

run for ten seconds to measure the average number of images that could be processed

at different resolutions. The results shown in Figure 13(c) indicate that it could

produce 14.7 opponency maps per second with a 50×50 image, whereas images

with a resolution of 500×500 could only be processed once every five seconds. At

the 320×240 resolution used by the iCub, the visual filter outputs one opponency

map every 1.5 seconds, which is much slower than the 15 frames per second of the

iCub’s cameras.

5.3. Tests of the Complete System

Tests of the complete system were carried out to establish that a network simulated in

SpikeStream/NeMo could receive sensory data from the iCub after it had been encoded

by iSpike into spikes, and to check that iSpike could convert spikes from the network

into motor output and send this motor output to the iCub. For these tests we created

a demonstration network with motor output layers, proprioceptive layers and a visual

layer that received information from the R+G- channel. It was found that activity in

the motor output layers successfully controlled the robot’s joints, and that movements

of the robot’s joints resulted in appropriate patterns in the proprioceptive and visual

layers. Three videos of these experiments are available at http://ispike.sf.net/videos/,
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Figure 14. iSpike, SpikeStream, NeMo and the virtual iCub working together.

and a screenshot is shown in Figure 14. ¶

6. Discussion and Future Work

While iSpike’s angle conversion was fast enough for real time operation, its visual

processing was significantly slower than the iCub’s frame rate. In many situations

this would not be an issue because the latest image is buffered and spikes from the

image are delivered continuously at whatever rate the neural simulator is running. It

is also possible to achieve near real time performance by reducing the image resolution.

However, if high resolution or fast movements were required, the slow image processing

would become a problem, and we are looking at more efficient ways of implementing

the foveation and difference-of-Gaussian algorithms. Hardware acceleration on graphics

cards could also be used to speed up the visual processing.

A second direction of future work is the extension of the sensory processing to

include biologically realistic encoding of audio data into spikes and spike encoding

of tactile data. The motor output could be extended to include biologically realistic

decoding of spike patterns into audio output, and improvements to the vision could

include a motion sensitive magnocellular channel, which would work in a similar way

to the silicon retina developed by Delbruck [32]. In future work it would also be worth

changing the foveation to Wilson’s more biologically realistic model, if the performance

issues could be addressed.

¶ These tests were carried out using the iCub simulator because at the time of writing the iCub robot

at our institution (Imperial College, London) has been away for refurbishment.



iSpike: A Spiking Neural Interface for the iCub Robot 17

The current version of iSpike should work with any robot that interfaces with YARP,

as long as the visual and numerical data is in the same format as the iCub. It would be

relatively straightforward to extend iSpike to support other robots and platforms, and

it could also be used to convert other types of data to and from spikes. For example,

financial data could be encoded into spikes, so that spiking neural networks could be

used to identify patterns and predict profitable trades.

The iSpike interface is just a starting point for future work on embodied biologically-

inspired spiking neural networks. It will make it easier to build embodied simulated

networks that further our knowledge about the brain, and it can help us to create more

intelligent robots that use spiking neural networks to process sensory information from

their environment and control their bodies in the world. The development of accurate

models of sensory encoding and decoding can also improve our understanding of how the

brain processes information, which could lead to better brain interfaces and artificial

replacements for lost senses. For example, biologically realistic models of the retina

could contribute to the development of replacement vision systems that convert camera

data into spikes [33, 34]. Biologically realistic decoding of motor output data could help

us to develop systems that enable paraplegic patients to control a robot body.

7. Conclusions

This paper has presented iSpike, an interface that encodes sensory information from a

robot into spikes and converts spike patterns into motor commands that are sent to the

robot. iSpike has been developed to enable hardware-accelerated neural simulators, such

as NeMo, to be used in conjunction with the iCub and other robots, and it is compatible

with any system that can interface with a C++ library. Future plans include improving

the performance, extending the support for sensory and motor encoding and decoding,

and using iSpike in conjunction with SpikeStream, NeMo and the iCub to model aspects

of the brain and explore how intelligent systems can be developed using spiking neural

networks.
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